Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits
نویسندگان
چکیده
منابع مشابه
Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part I. Homoclinic Orbits
The existence of homoclinic orbits, for a finite-difference discretized form of a damped and driven perturbation of the focusing nonlinear Schroedinger equation under even periodic boundary conditions, is established. More specifically, for external parameters on a codimension 1 submanifold, the existence of homoclinic orbits is established through an argument which combines Melnikov analysis w...
متن کاملHomoclinic and heteroclinic orbits in a modified Lorenz system
This paper presents a mathematically rigorous proof for the existence of chaos in a modified Lorenz system using the theory of Shil’nikov bifurcations of homoclinic and heteroclinic orbits. Together with its dynamical behaviors, which have been extensively studied, the chaotic dynamics of the modified Lorenz system are now much better understood, providing a rigorous theoretic foundation to sup...
متن کاملexistence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولExistence of Periodic Solutions and Homoclinic Orbits for Third-order Nonlinear Differential Equations
The existence of periodic solutions for the third-order differential equation ̇̈ x+ ω2ẋ = μF(x,ẋ, ẍ) is studied. We give some conditions for this equation in order to reduce it to a second-order nonlinear differential equation. We show that the existence of periodic solutions for the second-order equation implies the existence of periodic solutions for the above equation. Then we use the Hopf bif...
متن کاملExistence of Homoclinic Orbits for a Class of Nonlinear Functional Difference Equations
By using critical point theory, we prove the existence of a nontrivial homoclinic orbit for a class of nonlinear functional difference equations. Our conditions on the nonlinear term do not need to satisfy the well-known global Ambrosetti-Rabinowitz superquadratic condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Mathematical Analysis
سال: 1996
ISSN: 0036-1410,1095-7154
DOI: 10.1137/s0036141094264414